

DPP – 2 (Magnetism & Matter)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/74

Video Solution on YouTube:-

https://youtu.be/BBdrwh3cjko

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/56

- Earth's magnetic field always has a horizontal component except at or Horizontal Q 1. component of earth's magnetic field remains zero at
 - (a) Equator

(b) Magnetic poles

(c) A latitude of 60°

- (d) An altitude of 60°
- Q 2. The correct relation is

(a)
$$B = \frac{B_H}{B_V}$$

(b)
$$B = B_H \times B_V$$

(c)
$$B = \sqrt{B_H^2 + B_V^2}$$

(d)
$$B = B_H + B_V$$

(Where B_H = Horizontal component of earth's magnetic field, B_V = Vertical component of earth's magnetic field and B = Total intensity of earth's magnetic field)

- At a certain place, the horizontal component of earth's magnetic field is $\frac{1}{\sqrt{3}}$ times of its Q 3. vertical component. The angle of dip at that place is
 - (a) 30°

(b) 45°

(c) 75^0

- (d) 60°
- The earth's magnetic field at a certain place has a horizontal component 0.3 Gauss and Q4. the total strength 0.5 Gauss. The angle of dip is:

(a)
$$\tan^{-1} \frac{3}{2}$$

(b)
$$\sin^{-1} \frac{3}{4}$$

(c)
$$\tan^{-1}\frac{\frac{4}{4}}{3}$$

(b)
$$\sin^{-1} \frac{3}{4}$$

(d) $\sin^{-1} \frac{3}{5}$

- A magnetic needle (free to rotate in any direction) will show which one of the following Q 5. directions at the earth's magnetic pole
 - (a) Vertical
 - (b) No particular direction
 - (c) Bent at 45° to the vertical
 - (d) Horizontal
- A short magnet of moment 6.75 Am^2 produces a neutral point on its axis. If horizontal Q 6. component of earth's magnetic field is $5 \times 10^{-5} Wb/m^2$, then the distance of the neutral point from center of magnet should be
 - (a) 10 cm

(b) 20 cm

(c) 30 cm

(d) 40 cm

hysicsaholics

- Q 7. At a given place on earth's surface the horizontal component of earths magnetic field is 2×10^{-5} T and resultant magnetic field is 4×10^{-5} T. The angles of dip at this place
 - (a) 30^{0}

(b) 60°

(c) 90^{0}

- (d) 45°
- Q 8. The true value of angle of dip at a place is 60°, the apparent dip in a plane inclined at an angle of 30° with magnetic meridian is
 - (a) $\tan^{-1}\left(\frac{1}{2}\right)$

(b) $tan^{-1}(2)$

(c) $\tan^{-1}\left(\frac{2}{3}\right)$

- (d) None of these
- The true dip at a place is 30°. What is the apparent dip when the dip circle is turned Q 9. 60° out of the magnetic meridian?
 - (a) $\tan^{-1}\left(\frac{1}{\sqrt{6}}\right)$

(b) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (d) None of these

(c) $\tan^{-1}\left(\frac{2}{\sqrt{2}}\right)$

- Q 10. If a dip circle is placed in a vertical plane at an angle of 30° to the magnetic meridian, the dip needle makes an angle of 45° with the horizontal. The real dip at that place is?
 - (a) $\tan^{-1}\left(\frac{2}{3}\right)$

(b) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$

(c) $\tan^{-1}\left(\frac{2}{\sqrt{2}}\right)$

- (d) $tan^{-1} \left(\frac{\sqrt{3}}{\sqrt{5}} \right)$
- Q 11. At a certain place a magnet makes 30 oscillations per minute. At another place where the magnetic field is double, its time period will be
 - (a) 4 sec

(b) 2 sec

- (d) $\sqrt{2}$ sec
- Q 12. If the strength of the magnetic field is increased by 21%, the frequency of a magnetic needle oscillating in that field:
 - (a) Increases by 10%
- (b) Decreases by 10%
- (c) Increases by 11%
- (d) Decreases by 11%
- Q 13. A magnetic needle of magnetic moment $6.7 \times 10^{-2} \, Am^2$ and moment of inertia $7.5 \times 10^{-6} \, kg \, m^2$ is performing simple harmonic oscillations in a magnetic field of 0.01T. Time taken for 10 complete oscillations is:
 - (a) 7.76 s

(b) 6.65 s

(c) 8.89 s

- (d) 9.98 s
- Q 14. Time period for a magnet is T. If it is divided in four equal parts along its axis and perpendicular to its axis as shown then time period for each part will be

hysicsaholics

- (a) 4*T*
- (c) $\frac{T}{2}$

- (b) $\frac{T}{4}$ (d) T
- Q 15. Two bar magnets of the same mass, length and breadth but magnetic moments M and 2M respectively, when jointed in same position (Similar pole in same direction), time period is 3 sec. What will be the time period when they are placed in different position (Similar pole in opposite direction):
 - (a) $\sqrt{3}$ sec

(b) $3\sqrt{3}$ sec

(c) 3 sec

- (d) 6 sec
- Q 16. A dip needle in a vertical plane perpendicular to the magnetic meridian will remain-
 - (a) Vertical
 - (b) Horizontal
 - (c) In any direction
 - (d) Inclined at 45° with horizontal
- Q 17. When a magnet is placed vertical then the number of neutral point obtained in the plane of paper is-
 - (a) 1
- (b) 2
- (c) 4
- (d) 3
- Q 18. The magnetic needle of a tangent galvanometer is deflected at an angle 30°. The horizontal component of earth's magnetic field 0.34×10^{-4} T is along the plane of the coil. The magnetic field of coil-
 - (a) 1.96×10^{-4} T

(b) 1.96×10^{-5} T

(c) 1.96×10^4 T

(d) $1.96 \times 10^5 \text{ T}$

Answer Key

Q.1 b	Q.2 c	Q.3 d	Q.4 c	Q.5 a
Q.6 c	Q.7 b	Q.8 b	Q.9 c	Q.10 b
Q.11 d	Q.12 a	Q.13 b	Q.14 c	Q.15 b
Q.16 a	Q.17 a	Q.18 b		1